A hacker's view of DECT

DECT Security (∗ 1992, † 2008)

stuff on depected.org

deDECTed.org

Andreas Schuler Erik Tews Ralf-Philipp Weinmann

December 29, 2008
1. A hacker’s view of DECT
 - What is DECT?

2. DECT Security (☆ 1992, † 2008)
 - Concept
 - DSAA
 - DSC
 - PRNG

3. stuff on dedected.org
 - Tools
Who we are

People from various locations participate in the project:

Darmstadt Cryptanalysis, packet capturing, FPGA implementations, reverse engineering

Luxembourg Cryptanalysis, reverse engineering, packet capturing, writing drivers

Trier reverse engineering, packet capturing, writing drivers

Munich reverse engineering, packet capturing, writing drivers

Weimar Cryptanalysis

Berlin infrastructure, chip reverse engineering, counseling

Wiesbaden kismet integration

Andreas Schuler, Erik Tews, Ralf-Philipp Weinmann
deDECTed.org
What is DECT?

In the past, there was...

CT1(+) Analog escommunication, different frequencies for both directions

CT2 Analog communication, same frequency for both directions, time multiplexing

No encryption at all, no security (?)
DECT usage

DECT is used for:
- Cordless phones
- Wireless ISDN access
- Babyphones
- Emergency calls
- Remotely controllable door openers
- Cordless EC terminals
- Traffic lights

situation in germany:
- $\approx 30.000.000$ base stations currently in use
What is DECT?

Terms

FP Fixed Part (base station)
PP Portable Part (cordless phone/handset)
RFPI Radio Fixed Part Identity
IPUI International Portable Users Identity
DSC DECT Standard Cipher
DSAA DECT Standard Authentication Algorithm
UAK User Authentication Key (shared key between handset and base station)
DECT

- ETSI EN 300175
- Digital communication
- GFSK modulation
- EU: 10 carriers (1880-1900 MHz) with 250mW
- US: 5 carriers (1920-1930 MHz) with 100mW
- channel spacing 1.728 kHz
- 24 time slots per channel, 12 upstream, 12 downstream
What is DECT?

DECT time/frequency multiplexing

Carrier

Slot

Packet

S-Field
Sync

A-Field
Signaling

B-Field
Payload

X
Z
Space

FP → PP

PP → FP
What is DECT?

Scrambling

- avoids DC-Offset
- B-Field data will be XORed with output from LFSR
- LFSR will be initialized with frameno
- LFSR is public
What is DECT?

Encryption

- A-Field control channel (setup communication, dialing, ...) will be XORed with bitstream from DSC
- B-Field data will be XORed with bitstream from DSC
FP/PP behaviour

FP (station)
- Broadcasting network informations (RFPI,...)
- Scanning on all carriers and possible slots for PP activity

PP (phone)
- Don’t send in idle mode
- Scanning and making a list of carrier average RSSI
- Syncronizing with base station
- Select best carrier/slot-combination for communication and opening connection
- Initiate Encryption
Sniffing difficulties

- Stations not synchronized
- No packet source/destination field like in ethernet-packets
- We don’t know where PP opens connection
- For descrambling the framenumber must be known
What is DECT?

USRP DECT Sniffer

- Can capture all packets on a channel
- CPU requirements are high (≈ 2 GHz CPU required)
- Time multiplexing is difficult to handle
- Sending frames is not supported

Total costs for this tool: 1000 EUR
ComOnAir DECT Sniffer

- Can scan for stations or active calls
- Can sync on stations and dump active calls
- CPU requirements low
- Sending frames supported soon

Total costs for this tool: 23 EUR
What is DECT?

ComOnAir reversing

- Card with Windows driver as basestation for SIP telephony
- No Linux driver
ComOnAir reversing

- Reading out PCMCIA tuples
- Writing simple Linux character device driver
- Get access to IO memory
ComOnAir reversing

- Removing case
- Searching datasheets
- Reversing hardware
- Reversing Windows driver, find firmware image
- Try to activate hardware
 - Write firmware with unknown command-set
 - Upload firmware to chip
 - Wait for interrupts
ComOnAir reversing

- ...and try...and try...and try...
- Adding measurement tools to card
What is DECT?

ComOnAir reversing

commit b2185f943fd642bd46ca4e13f87d3fce374fbe69
Author: xxx xxx <xxx@xxx.xxx>
Date: Wed Dec 3 23:59:21 2008 +0000

WE HAVE INTERRUPTS cat /proc/interrupts ! :))
What is DECT?

ComOnAir Type III total

Andreas Schuler, Erik Tews, Ralf-Philippe Weinmann
dedected.org
ComOnAir Type III radio

Outline

A hacker's view of DECT

DECT Security († 1992, † 2008)

stuff on dedected.org

What is DECT?

ComOnAir Type III radio
What is DECT?

ComOnAir Type II total

Andreas Schuler, Erik Tews, Ralf-Philipp Weinmann
deDECTed.org
What is DECT?

ComOnAir Type II radio

Andreas Schuler, Erik Tews, Ralf-Philipp Weinmann
deDECTed.org
National/Sitel Dedicated Instruction Processor

- Programmed Dispatcher
- All instructions 16 bit
- Coprocessor (Harvard)
- Code RAM 512 byte
- Data RAM 2 kb
- No accu
- No arithmetic or logic commands
- No comparing commands
- Patching program code in runtime (from outside)
- DECT Interception Processor

Andreas Schuler, Erik Tews, Ralf-Philipp Weinmann
deDECTed.org
What is DECT?

SC14421

Andreas Schuler, Erik Tews, Ralf-Philipp Weinmann
deDECTed.org
DECT Security overview

- UAK
- RS
- RAND_F
- IV
- RAND_P
- A11
- A12
- A21
- A22
- RES1
- RES2
- DSAA
- DSC
- Keystream
- KSG

Andreas Schuler, Erik Tews, Ralf-Philipp Weinmann
deDECTed.org
However...

- Sometimes, there is no authentication and encryption at all.
- Sometimes, only base stations require authentication of a portable part.
- Sometimes, no encryption is used.

This allows trivial attacks with the right hardware.
Passive sniffing of voice data

When no ciphering is active, it is possible to capture and record all audio data:

- Used a standard PCMCIA DECT controller to implement a DECT sniffer
- A driver for Linux for the card has been written
- A userspace utility scans for an active call and tracks the first one found
- Packets are recorded to a pcap file
- The file can later be played with an audio player
- Codec fine tunings needed: sound quality somewhat lacking at the moment

Total costs for the attack: 23 EUR.
Impersonating a DECT base station

When encryption is active, this attack doesn’t work. We also implemented an advanced attack:

- Phones often require no authentication of the base station
- Impersonating a base station is possible
- Even when a phone supports encryption, most phones will not abort connection if base station does not
- Calls can be rerouted
- Recording of rerouted calls is possible
- Implementation requires attacker to enter RFPI of base station to impersonate and IPUI of phone to accept

Total costs for this attack: 23 EUR.
DSAA

Used for:

- Authentication of PP
- Authentication of FP
- Key generation for DSC
- Generation of UAK for DECT/GAP devices

Algorithm is secret
We decided to reverse engineer DSAA:

- A12, A21, and A22 are just simple wrappers around A11
- A11 takes a 128 bit key and a 64 bit random to generate a 128 bit output
- A11 uses four different block ciphers we call *cassable* to generate the output
A11 structure

\[
\begin{align*}
\text{rand} & \quad \text{rev(key[32 \ldots 95])} \\
& \quad \downarrow \\
& \quad B1 : \text{cassable}^{46,35} \\
& \quad \downarrow \\
& \quad B2 : \text{cassable}^{25,47} \\
& \quad \downarrow \\
& \quad t \\
& \downarrow \\
& \text{rev(b[32 \ldots 63])} \| \text{rev(t)} \| \text{rev(b[0 \ldots 31])} \\
\end{align*}
\]

\[
\begin{align*}
& \quad \text{rev(key[96 \ldots 127])} \| \text{rev(key[0 \ldots 31])} \\
& \quad \downarrow \\
& \quad B3 : \text{cassable}^{60,27} \\
& \quad \downarrow \\
& \quad B4 : \text{cassable}^{55,39} \\
& \quad \downarrow \\
& \quad b \\
\end{align*}
\]
The cassable block cipher

- cassable is a SPN type construction
 - input is 64 bit
 - key is 64 bit
 - output is 64 bit
 - internal state also has 64 bit
- for key scheduling, a bit permutation is used
- each variant of cassable only differs in this bit permutation
- to add the round key, \oplus is used
- a single cassable invocation does 6 rounds in total
- each round consists of
 - a key addition (\oplus)
 - S-box application
 - one of three different mixing functions
- no final key addition
cassable cryptanalysis

- No final key addition at the end, reduces strength to five effective rounds
- At first look, full diffusion after three rounds
- However, full diffusion only after four rounds
- S-Box allows linear cryptanalysis for 2-3 rounds versions
- Practical algebraic attacks possible up to 3 rounds version of cassable
- A differential attack possible on the full cipher with about 16 chosen input-output pairs and computational effort comparable to 2^{37} invocations of cassable
- However, this has no direct impact on DSAA so far
DSAA summary

- Paper *Attacks on the DECT authentication mechanisms* accepted to CT-RSA 2009
- Paper contains description and analysis of DSAA
- C and Java implementations will be available at dedected.org
- A high performance VHDL implementations for FPGA cards is ready, but not yet open source
The DECT Standard Cipher

- Did not find any software implementation
- From the ETSI non-disclosure agreement for the DSC: “6. Not to register, or attempt to register, any IPR (patents or the like rights) relating to the DSC and containing all or part of the INFORMATION.”
- U.S. Patent 5,608,802, registered by Alcatel, originally registered in Spain in 1993: “A data ciphering device that has special application in implementing Digital European Cordless Telephone (DECT) standard data ciphering algorithm [...]”
- Oops!
DSC: information learned from the patent

- Irregularly clocked combiner with 1 bit of memory
- 3 irregularly clocked LFSRs (2/3) of length 17,19,21
- 1 regularly clocked LFSR (3) of length 23
- key setup: load key, then 40 blank steps (irregularly clocked)
- check whether register is zero after 11 steps, load 1 into every zero register
DSC: hardware based reversing

- done by starbug, Karsten Nohl, Flylogic and Mazzo
DSC: software based recovery

- NSC/SiTel SC144xx CPUs have commands to save internal state in DIP memory (11 bytes)
- DIP memory can be read from host
- Can load/save state after and before pre-ciphering (D_LDS, D_WRS)
- Single-step through key loading to determine feedback taps
- Isolate subset of bits determining clocking differentially in pre-ciphering
- Interpolate clocking function (it's linear actually, could've seen that with bare eyes)
- Output combiner is still missing at the moment
DSC: a diagram

R1: 17 bits
R2: 19 bits
R3: 21 bits
R4: 23 bits

clocks_R1 = 2 + ((R2[9] + R3[10] + R4[22]) mod 2)
clocks_R3 = 2 + ((R1[8] + R2[9] + R4[22]) mod 2)
Preliminary analysis of DSC

- Had hoped for R4 doing the clock control (like A5/2)
- Larger internal state: attacks against A5/1 not directly transferrable
- Short pre-ciphering phase
UAK allocation (GAP)

- UAK: 128 bits, master secret shared between FP and PP
- “Pairing mode”
- Authentication code (PIN) shared between FP and PP
- Only depends on 64 bits of $\text{RAND}_F + n$ bits of PIN
- Entropy for RANDs: where from?
UAK allocation (GAP)

- $RES1 = A12(A11(K, RS), RAND_F)$
- $UAK = KS' = A21(K, RS)$
- $RES2 = A22(KS', RAND_P)$

Andreas Schuler, Erik Tews, Ralf-Philipp Weinmann
deDECTed.org
Example a of low-entropy PRNG

```c
uint16_t counter;
uint8_t xorvalue;

void next_rand(uint8_t *rand)
{
    int i;

    for(i = 0; i < 8; i++) {
        rand[i] = (counter >> i) ^ xorvalue;
    }

    xorvalue += 13;
}
```

Andreas Schuler, Erik Tews, Ralf-Philipp Weinmann
deDECTed.org
Practical UAK recovery

- Actual entropy of PRNG on last slide: 22 bits
- Grab two challenge-response pairs ((RS, RAND_F), RES1) sent by FP off the air
- Each pair acts as 32-bit filter
- Iterate over all 4-digit PINs: $\approx 3 \cdot 2^{35.29}$ DSAA operations
- Assume 0000 PIN: $2^{23.58}$ DSAA operations (≈ 50 secs on an Intel C2D 2.4GHz)
- Impact: impersonate handsets, decrypt encrypted calls etc.
UAKs: Knowing how to attack

- Have more PRNG examples: thus far every one was bad
- Classify/distinguish RANDs, determine underlying DECT stack/PRNG
- Use 16-bit EMC (Equipment Manufacturer’s Code) contained in RFPI
- Only 2^{12} devices per EMC, database not available
UAKs of prepaired phones

- Unchartered territory for us so far
- Can read (serial) EEPROM to obtain UAK
- Most phones have test points (for personalisation) in battery case
- Expect externally generated (non)-randomness
Kismet
Other stuff (soon on dedected.org)

- Paper about DSAA cryptanalysis
- FPGA implementation project for DSAA
- Kismet
- DSC implementation
- GNU Radio Plugin
- Some infos about the AVM Fritzbox 7270
- More infos about specific phone
Getting the card

The com-on-air pcmcia type 2 card can be found at:

- The foedbud shop here locally
- on ebay (enough cards are available)
We would like to thank:

- The Chaos Computer Club for great support of the project and providing hardware
- TU-Darmstadt, Uni Luxenburg, Bauhaus Universitt Weimar
- Mazzoo for great help with the linux driver
- Starbug, Karsten, and Flylogics for Chip reverse engineering
- Alcatel for filling the DECT ciphering device patent
- many other people

Contact: team@dedected.org